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Towards Understanding Spectral Initialization for Phase Retrieval

The purpose of this set of notes is to try and unpack what’s going on in the initialization stage of
Truncated Wirtinger Flow (TWF). TWF is an algorithm that optimally solves the phase retrieval problem.
Recall that in phase retrieval, the objective is to recover x given sampling matrices ai and

yi = ⟨ai,x⟩2, i = 1, . . . ,m. (1)

Due to the non-convex nature of this problem, we need to initialize x0 via a spectral method to guarantee
that the initial x0 is close to the true x∗ with high probability. To do this, we will assume the Gaussian
measurement setting, where ai

i.i.d.∼ N (0, I) . In TWF, we take the top eigenvector of the matrix

Y =
m∑
i=1

y2i aia
⊤
i 1{|yi|2≤α2λ2}, (2)

where

λ =

√√√√ 1

m

m∑
i=1

yi. (3)

The truncation is here is saying to only take the measurements of yi that are not too far away from some
magnitude of its mean. We will show why this truncation is useful from a mathematical point of view. To
show this, let’s ignore the truncation in Y and call the un-truncated matrix Z . Why is this matrix Z
important? Well, under the Gaussian measurement assumption, a moments calculation1 shows that

Z∗ = E[Z] = 2x∗x∗⊤ + ∥x∗∥22I. (4)

We can show that the top eigenvalue of Z∗ is

Z∗u = λu (5)

(2x∗x∗⊤ + ∥x∗∥22I)u = λu (6)

x∗⊤(2x∗x∗⊤ + ∥x∗∥22I)u = x∗⊤λu (7)

2x∗⊤x∗x∗⊤u+ x∗⊤x∗⊤x∗u = λx∗⊤u (8)

2x∗⊤x∗(x∗⊤u) + x∗⊤x∗(x∗⊤u) = λ(x∗⊤u) (9)

3∥x∗∥22 = λ. (10)

Clearly, it follows that the leading eigenvector with λ = 3∥x∗∥22 is equivalent to u1 = x∗

∥x∗∥2
. Note that by

the law of large numbers,

1

m

m∑
i=1

yi =⇒ E[yi], (11)

and E[(a⊤x∗)2] = ∥x∗∥22 (also by a moments calculation). Thus, scaling the leading eigenvector u1 with λ
gives us the initial spectral estimate

x0 =

(
1

m

m∑
i=1

yi

)1/2

u1. (12)

1We can see this by looking at every (i, j) -th element of Z .
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Okay, so this is nice so far. Netrapalli et al. [?] shows that bounding ∥Z− Z∗∥F yields that x is also close
to the true x∗ .2 Now, we want to show what the truncation buys us. To see this, we need to look at the
lower bound of ∥Z− Z∗∥F . Some algebra shows that

∥Z∥ ≥
a⊤j Zaj

∥aj∥22
(By Rayleigh–Ritz) (13)

=
1

m

m∑
i=1

yi
(a⊤i aj)

2

∥aj∥22
(By the definition of Z) (14)

≥ 1

m

(
max

i
yi

)
∥ai∗∥22, (By replacing the sum with the max) (15)

where ai∗ refers to the index i that maximizes yi . Note that under the Gaussian measurement assumption,
yi

∥x∗∥2
2
=

(a⊤
i x)2

∥x∗∥2
2

forms a collection of X 2 random variables with 1 degree of freedom! Then, searching the
internet for concentration of the maximum of sub-exponential random variables, we have that

max
1≤i≤m

yi
∥x∗∥22

≈
√

2 logm+ 2 logm (16)

=⇒ max
1≤i≤m

yi = (
√
2 logm+ 2 logm)∥x∗∥22 (17)

and

∥ai∥22 ≈ n. (18)

Plugging these results into the lower bound of ∥Z∥ , we have

∥Z∥ ≥ n(
√
2 logm+ 2 logm)

m
∥x∗∥22. (19)

Some more algebra shows us that

∥Z− Z∗∥ ≥ ∥Z∥ − ∥Z∗∥ (20)

= ∥Z∥ − 3∥x∗∥22 (21)

≥ n logm

m
∥x∗∥22 − 3∥x∗∥22 (22)

≫ ∥Z∗∥. (23)

If we have m ≪ n logm , which is very possible in the under-determined setting, this means that there exists
a top eigenvalue (and hence eigenvector) that is much closer to Z than Z∗ and that the deviation between
these two matrices is not well-controlled. This suggests a natural remedy, which is to truncate the values of
yi that are much larger than its mean. This would give us that ∥Y − Z∗∥ is much more well-controlled.

2We will show this in the next set of notes.
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